Appendix C — References

Anderson, David J., and Pietro Perona. 2014. “Toward a Science of Computational Ethology.” Neuron 84 (1): 18–31. https://doi.org/10.1016/j.neuron.2014.09.005.
Beane, Glen, Brian Q. Geuther, Thomas J. Sproule, Anshul Choudhary, Jarek Trapszo, Leinani Hession, Vivek Kohar, and Vivek Kumar. 2023. JAX Animal Behavior System (JABS): A Video-Based Phenotyping Platform for the Laboratory Mouse.” bioRxiv. https://doi.org/10.1101/2022.01.13.476229.
Berman, Gordon J., Daniel M. Choi, William Bialek, and Joshua W. Shaevitz. 2014. “Mapping the Stereotyped Behaviour of Freely Moving Fruit Flies.” Journal of The Royal Society Interface 11 (99): 20140672. https://doi.org/10.1098/rsif.2014.0672.
Biderman, Dan, Matthew R. Whiteway, Cole Hurwitz, Nicholas Greenspan, Robert S. Lee, Ankit Vishnubhotla, Richard Warren, et al. 2024. “Lightning Pose: Improved Animal Pose Estimation via Semi-Supervised Learning, Bayesian Ensembling and Cloud-Native Open-Source Tools.” Nature Methods 21 (7): 1316–28. https://doi.org/10.1038/s41592-024-02319-1.
Blau, Ari, Evan S. Schaffer, Neeli Mishra, Nathaniel J. Miska, International Brain Laboratory, Liam Paninski, and Matthew R. Whiteway. 2024. “A Study of Animal Action Segmentation Algorithms Across Supervised, Unsupervised, and Semi-Supervised Learning Paradigms.” Neurons, Behavior, Data Analysis, and Theory, December, 1–46. https://doi.org/10.51628/001c.127770.
Bohnslav, James P, Nivanthika K Wimalasena, Kelsey J Clausing, Yu Y Dai, David A Yarmolinsky, Tomás Cruz, Adam D Kashlan, et al. 2021. DeepEthogram, a Machine Learning Pipeline for Supervised Behavior Classification from Raw Pixels.” Edited by Mackenzie W Mathis, Timothy E Behrens, Mackenzie W Mathis, and Johannes Bohacek. eLife 10 (September): e63377. https://doi.org/10.7554/eLife.63377.
Bradski, G. 2000. The OpenCV Library.” Dr. Dobb’s Journal of Software Tools.
Chindemi, Giuseppe, Benoit Girard, and Camilla Bellone. 2023. “LISBET: A Machine Learning Model for the Automatic Segmentation of Social Behavior Motifs.” https://arxiv.org/abs/2311.04069.
CRISPR Ants Lose Ability to Smell.” 2017. Nature 548 (7667): 263–63. https://doi.org/10.1038/d41586-017-02337-4.
Datta, Sandeep Robert, David J. Anderson, Kristin Branson, Pietro Perona, and Andrew Leifer. 2019. “Computational Neuroethology: A Call to Action.” Neuron 104 (1): 11–24. https://doi.org/10.1016/j.neuron.2019.09.038.
De Almeida, Tulio Fernandes, Bruno Guedes Spinelli, Ramón Hypolito Lima, Maria Carolina Gonzalez, and Abner Cardoso Rodrigues. 2022. PyRAT: An Open-Source Python Library for Animal Behavior Analysis.” Frontiers in Neuroscience 16. https://www.frontiersin.org/articles/10.3389/fnins.2022.779106.
Dunn, Timothy W., Jesse D. Marshall, Kyle S. Severson, Diego E. Aldarondo, David G. C. Hildebrand, Selmaan N. Chettih, William L. Wang, et al. 2021. “Geometric Deep Learning Enables 3D Kinematic Profiling Across Species and Environments.” Nature Methods 18 (5): 564–73. https://doi.org/10.1038/s41592-021-01106-6.
Duporge, Isla, Sofia Minano, Nikoloz Sirmpilatze, Igor Tatarnikov, Scott Wolf, Adam L. Tyson, and Daniel Rubenstein. 2025. “Tracking the Flight: Exploring a Computational Framework for Analyzing Escape Responses in Plains Zebra (Equus Quagga).” arXiv. https://doi.org/10.48550/arXiv.2505.16882.
Friard, Olivier, and Marco Gamba. 2016. BORIS: A Free, Versatile Open-Source Event-Logging Software for Video/Audio Coding and Live Observations.” Methods in Ecology and Evolution 7 (11): 1325–30. https://doi.org/10.1111/2041-210X.12584.
Gallois, Benjamin, and Raphaël Candelier. 2021. FastTrack: An Open-Source Software for Tracking Varying Numbers of Deformable Objects.” PLOS Computational Biology 17 (2): e1008697. https://doi.org/10.1371/journal.pcbi.1008697.
Goodwin, Nastacia L., Jia J. Choong, Sophia Hwang, Kayla Pitts, Liana Bloom, Aasiya Islam, Yizhe Y. Zhang, et al. 2024. “Simple Behavioral Analysis (SimBA) as a Platform for Explainable Machine Learning in Behavioral Neuroscience.” Nature Neuroscience, May, 1–14. https://doi.org/10.1038/s41593-024-01649-9.
Graser, Anita. 2019. MovingPandas: Efficient Structures for Movement Data in Python.” GI_Forum 2019, Volume 7, (June): 54–68. https://doi.org/10.1553/giscience2019_01_s54.
Graving, Jacob M, Daniel Chae, Hemal Naik, Liang Li, Benjamin Koger, Blair R Costelloe, and Iain D Couzin. 2019. DeepPoseKit, a Software Toolkit for Fast and Robust Animal Pose Estimation Using Deep Learning.” Edited by Ian T Baldwin, Josh W Shaevitz, Josh W Shaevitz, and Greg Stephens. eLife 8 (October): e47994. https://doi.org/10.7554/eLife.47994.
Günel, Semih, Helge Rhodin, Daniel Morales, João Campagnolo, Pavan Ramdya, and Pascal Fua. 2019. DeepFly3D, a Deep Learning-Based Approach for 3D Limb and Appendage Tracking in Tethered, Adult Drosophila.” Edited by Timothy O’Leary, Ronald L Calabrese, and Josh W Shaevitz. eLife 8 (October): e48571. https://doi.org/10.7554/eLife.48571.
Ho, Hinze, Nejc Kejzar, Hiroki Sasaguri, Takashi Saito, Takaomi C. Saido, Bart De Strooper, Marius Bauza, and Julija Krupic. 2023. “A Fully Automated Home Cage for Long-Term Continuous Phenotyping of Mouse Cognition and Behavior.” Cell Reports Methods 3 (7): 100532. https://doi.org/10.1016/j.crmeth.2023.100532.
Hsu, Alexander I., and Eric A. Yttri. 2021. “B-SOiD, an Open-Source Unsupervised Algorithm for Identification and Fast Prediction of Behaviors.” Nature Communications 12 (1): 5188. https://doi.org/10.1038/s41467-021-25420-x.
Hu, Yujia, Carrie R. Ferrario, Alexander D. Maitland, Rita B. Ionides, Anjesh Ghimire, Brendon Watson, Kenichi Iwasaki, et al. 2023. LabGym: Quantification of User-Defined Animal Behaviors Using Learning-Based Holistic Assessment.” Cell Reports Methods 0 (0). https://doi.org/10.1016/j.crmeth.2023.100415.
Kabra, Mayank, Alice A. Robie, Marta Rivera-Alba, Steven Branson, and Kristin Branson. 2013. JAABA: Interactive Machine Learning for Automatic Annotation of Animal Behavior.” Nature Methods 10 (1): 64–67. https://doi.org/10.1038/nmeth.2281.
Karashchuk, Pierre, Katie L. Rupp, Evyn S. Dickinson, Sarah Walling-Bell, Elischa Sanders, Eiman Azim, Bingni W. Brunton, and John C. Tuthill. 2021. “Anipose: A Toolkit for Robust Markerless 3D Pose Estimation.” Cell Reports 36 (13): 109730. https://doi.org/10.1016/j.celrep.2021.109730.
Koolhaas Jaap M., de Boer Sietse F., Coppens Caroline M. 2013. “The Resident-Intruder Paradigm: A Standardized Test for Aggression, Violence and Social Stress.” JoVE, no. 77: e4367. https://doi.org/doi:10.3791/4367.
Krakauer, John W., Asif A. Ghazanfar, Alex Gomez-Marin, Malcolm A. MacIver, and David Poeppel. 2017. “Neuroscience Needs Behavior: Correcting a Reductionist Bias.” Neuron 93 (3): 480–90. https://doi.org/10.1016/j.neuron.2016.12.041.
Lauer, Jessy, Mu Zhou, Shaokai Ye, William Menegas, Steffen Schneider, Tanmay Nath, Mohammed Mostafizur Rahman, et al. 2022. “Multi-Animal Pose Estimation, Identification and Tracking with DeepLabCut.” Nature Methods 19 (4): 496–504. https://doi.org/10.1038/s41592-022-01443-0.
Levitis, Daniel A., William Z. Lidicker, and Glenn Freund. 2009. “Behavioural Biologists Don’t Agree on What Constitutes Behaviour.” Animal Behaviour 78 (1): 103–10. https://doi.org/10.1016/j.anbehav.2009.03.018.
Lopes, Gonçalo, Niccolò Bonacchi, João Frazão, Joana P. Neto, Bassam V. Atallah, Sofia Soares, Luís Moreira, et al. 2015. “Bonsai: An Event-Based Framework for Processing and Controlling Data Streams.” Frontiers in Neuroinformatics 9. https://www.frontiersin.org/articles/10.3389/fninf.2015.00007.
Luxem, Kevin, Petra Mocellin, Falko Fuhrmann, Johannes Kürsch, Stephanie R. Miller, Jorge J. Palop, Stefan Remy, and Pavol Bauer. 2022. “Identifying Behavioral Structure from Deep Variational Embeddings of Animal Motion.” Communications Biology 5 (1): 1–15. https://doi.org/10.1038/s42003-022-04080-7.
Luxem, Kevin, Jennifer J Sun, Sean P Bradley, Keerthi Krishnan, Eric Yttri, Jan Zimmermann, Talmo D Pereira, and Mark Laubach. 2023. “Open-Source Tools for Behavioral Video Analysis: Setup, Methods, and Best Practices.” Edited by Denise J Cai and Laura L Colgin. eLife 12 (March): e79305. https://doi.org/10.7554/eLife.79305.
Martinez, Romain, Benjamin Michaud, and Mickael Begon. 2020. “‘Pyomeca‘: An Open-Source Framework for Biomechanical Analysis.” Journal of Open Source Software 5 (53): 2431. https://doi.org/10.21105/joss.02431.
Mathis, Alexander, Pranav Mamidanna, Kevin M. Cury, Taiga Abe, Venkatesh N. Murthy, Mackenzie Weygandt Mathis, and Matthias Bethge. 2018. DeepLabCut: Markerless Pose Estimation of User-Defined Body Parts with Deep Learning.” Nature Neuroscience 21 (9): 1281–89. https://doi.org/10.1038/s41593-018-0209-y.
Mathis, Alexander, Steffen Schneider, Jessy Lauer, and Mackenzie Weygandt Mathis. 2020. “A Primer on Motion Capture with Deep Learning: Principles, Pitfalls, and Perspectives.” Neuron 108 (1): 44–65. https://doi.org/10.1016/j.neuron.2020.09.017.
Miranda, Lucas, Joeri Bordes, Benno Pütz, Mathias V. Schmidt, and Bertram Müller-Myhsok. 2023. “DeepOF: A Python Package for Supervised and Unsupervised Pattern Recognition in Mice Motion Tracking Data.” Journal of Open Source Software 8 (86): 5394. https://doi.org/10.21105/joss.05394.
Pappalardo, Luca, Filippo Simini, Gianni Barlacchi, and Roberto Pellungrini. 2022. “Scikit-Mobility: A Python Library for the Analysis, Generation, and Risk Assessment of Mobility Data.” Journal of Statistical Software 103 (1): 1–38. https://doi.org/10.18637/jss.v103.i04.
Pereira, Talmo D., Joshua W. Shaevitz, and Mala Murthy. 2020. “Quantifying Behavior to Understand the Brain.” Nature Neuroscience 23 (12): 1537–49. https://doi.org/10.1038/s41593-020-00734-z.
Pereira, Talmo D., Nathaniel Tabris, Arie Matsliah, David M. Turner, Junyu Li, Shruthi Ravindranath, Eleni S. Papadoyannis, et al. 2022. SLEAP: A Deep Learning System for Multi-Animal Pose Tracking.” Nature Methods 19 (4): 486–95. https://doi.org/10.1038/s41592-022-01426-1.
Roald-Arbøl, Mikkel. 2024. “Animovement: An r Toolbox for Analysing Animal Movement Across Space and Time.” http://www.roald-arboel.com/animovement/.
Romero-Ferrero, Francisco, Mattia G. Bergomi, Robert C. Hinz, Francisco J. H. Heras, and Gonzalo G. de Polavieja. 2019. “Idtracker.ai: Tracking All Individuals in Small or Large Collectives of Unmarked Animals.” Nature Methods 16 (2): 179–82. https://doi.org/10.1038/s41592-018-0295-5.
Schweihoff, Jens F., Alexander I. Hsu, Martin K. Schwarz, and Eric A. Yttri. 2022. “A-SOiD, an Active Learning Platform for Expert-Guided, Data Efficient Discovery of Behavior.” bioRxiv. https://doi.org/10.1101/2022.11.04.515138.
Segalin, Cristina, Jalani Williams, Tomomi Karigo, May Hui, Moriel Zelikowsky, Jennifer J Sun, Pietro Perona, David J Anderson, and Ann Kennedy. 2021. “The Mouse Action Recognition System (MARS) Software Pipeline for Automated Analysis of Social Behaviors in Mice.” Edited by Gordon J Berman, Kate M Wassum, and Asaf Gal. eLife 10 (November): e63720. https://doi.org/10.7554/eLife.63720.
Sirmpilatze, Niko, Sofía Miñano, Chang Huan Lo, Adam Tyson, Will Graham, Stella Prins, Brandon Peri, et al. 2025. “Neuroinformatics-Unit/Movement: V0.9.0.” Zenodo. https://doi.org/10.5281/zenodo.16754905.
Sun, Jennifer J., Tomomi Karigo, David J. Anderson, Pietro Perona, Yisong Yue, and Ann Kennedy. 2021. “Caltech Mouse Social Interactions (CalMS21) Dataset.” CaltechDATA. https://doi.org/10.22002/D1.1991.
Tinbergen, Niko. 1951. The Study of Instinct. Clarendon Press.
Tomar, Suramya. 2006. “Converting Video Formats with FFmpeg.” Linux Journal 2006 (146): 10.
Walter, Tristan, and Iain D Couzin. 2021. TRex, a Fast Multi-Animal Tracking System with Markerless Identification, and 2D Estimation of Posture and Visual Fields.” Edited by David Lentink, Christian Rutz, and Sergi Pujades. eLife 10 (February): e64000. https://doi.org/10.7554/eLife.64000.
Weinreb, Caleb. 2024. “Keypoint-MoSeq: Parsing Behavior by Linking Point Tracking to Pose Dynamics.” Nature Methods 21.
Wiltschko, Alexander B., Matthew J. Johnson, Giuliano Iurilli, Ralph E. Peterson, Jesse M. Katon, Stan L. Pashkovski, Victoria E. Abraira, Ryan P. Adams, and Sandeep Robert Datta. 2015. “Mapping Sub-Second Structure in Mouse Behavior.” Neuron 88 (6): 1121–35. https://doi.org/10.1016/j.neuron.2015.11.031.