Appendix C — References
Anderson, David J., and Pietro Perona. 2014. “Toward a
Science of Computational
Ethology.” Neuron 84 (1): 18–31. https://doi.org/10.1016/j.neuron.2014.09.005.
Beane, Glen, Brian Q. Geuther, Thomas J. Sproule, Anshul Choudhary,
Jarek Trapszo, Leinani Hession, Vivek Kohar, and Vivek Kumar. 2023.
“JAX Animal Behavior
System (JABS): A Video-Based
Phenotyping Platform for the Laboratory Mouse.” bioRxiv. https://doi.org/10.1101/2022.01.13.476229.
Berman, Gordon J., Daniel M. Choi, William Bialek, and Joshua W.
Shaevitz. 2014. “Mapping the Stereotyped Behaviour of Freely
Moving Fruit Flies.” Journal of The Royal Society
Interface 11 (99): 20140672. https://doi.org/10.1098/rsif.2014.0672.
Biderman, Dan, Matthew R. Whiteway, Cole Hurwitz, Nicholas Greenspan,
Robert S. Lee, Ankit Vishnubhotla, Richard Warren, et al. 2024.
“Lightning Pose: Improved Animal Pose Estimation via
Semi-Supervised Learning, Bayesian Ensembling and
Cloud-Native Open-Source Tools.” Nature Methods 21 (7):
1316–28. https://doi.org/10.1038/s41592-024-02319-1.
Blau, Ari, Evan S. Schaffer, Neeli Mishra, Nathaniel J. Miska,
International Brain Laboratory, Liam Paninski, and Matthew R. Whiteway.
2024. “A Study of Animal Action Segmentation Algorithms Across
Supervised, Unsupervised, and Semi-Supervised Learning
Paradigms.” Neurons, Behavior, Data Analysis, and
Theory, December, 1–46. https://doi.org/10.51628/001c.127770.
Bohnslav, James P, Nivanthika K Wimalasena, Kelsey J Clausing, Yu Y Dai,
David A Yarmolinsky, Tomás Cruz, Adam D Kashlan, et al. 2021.
“DeepEthogram, a Machine Learning Pipeline for
Supervised Behavior Classification from Raw Pixels.” Edited by
Mackenzie W Mathis, Timothy E Behrens, Mackenzie W Mathis, and Johannes
Bohacek. eLife 10 (September): e63377. https://doi.org/10.7554/eLife.63377.
Bradski, G. 2000. “The OpenCV Library.”
Dr. Dobb’s Journal of Software Tools.
Chindemi, Giuseppe, Benoit Girard, and Camilla Bellone. 2023.
“LISBET: A Machine Learning Model for the Automatic Segmentation
of Social Behavior Motifs.” https://arxiv.org/abs/2311.04069.
“CRISPR Ants Lose Ability to Smell.” 2017.
Nature 548 (7667): 263–63. https://doi.org/10.1038/d41586-017-02337-4.
Datta, Sandeep Robert, David J. Anderson, Kristin Branson, Pietro
Perona, and Andrew Leifer. 2019. “Computational
Neuroethology: A Call to
Action.” Neuron 104 (1): 11–24. https://doi.org/10.1016/j.neuron.2019.09.038.
De Almeida, Tulio Fernandes, Bruno Guedes Spinelli, Ramón Hypolito Lima,
Maria Carolina Gonzalez, and Abner Cardoso Rodrigues. 2022.
“PyRAT: An
Open-Source Python
Library for Animal Behavior
Analysis.” Frontiers in Neuroscience 16. https://www.frontiersin.org/articles/10.3389/fnins.2022.779106.
Dunn, Timothy W., Jesse D. Marshall, Kyle S. Severson, Diego E.
Aldarondo, David G. C. Hildebrand, Selmaan N. Chettih, William L. Wang,
et al. 2021. “Geometric Deep Learning Enables 3D
Kinematic Profiling Across Species and Environments.” Nature
Methods 18 (5): 564–73. https://doi.org/10.1038/s41592-021-01106-6.
Duporge, Isla, Sofia Minano, Nikoloz Sirmpilatze, Igor Tatarnikov, Scott
Wolf, Adam L. Tyson, and Daniel Rubenstein. 2025. “Tracking the
Flight: Exploring a Computational
Framework for Analyzing Escape
Responses in Plains Zebra
(Equus Quagga).” arXiv. https://doi.org/10.48550/arXiv.2505.16882.
Friard, Olivier, and Marco Gamba. 2016. “BORIS: A
Free, Versatile Open-Source Event-Logging Software for Video/Audio
Coding and Live Observations.” Methods in Ecology and
Evolution 7 (11): 1325–30. https://doi.org/10.1111/2041-210X.12584.
Gallois, Benjamin, and Raphaël Candelier. 2021.
“FastTrack: An Open-Source Software for
Tracking Varying Numbers of Deformable Objects.” PLOS
Computational Biology 17 (2): e1008697. https://doi.org/10.1371/journal.pcbi.1008697.
Goodwin, Nastacia L., Jia J. Choong, Sophia Hwang, Kayla Pitts, Liana
Bloom, Aasiya Islam, Yizhe Y. Zhang, et al. 2024. “Simple
Behavioral Analysis (SimBA) as a
Platform for Explainable Machine Learning in Behavioral
Neuroscience.” Nature Neuroscience, May, 1–14. https://doi.org/10.1038/s41593-024-01649-9.
Graser, Anita. 2019. “MovingPandas:
Efficient Structures for Movement
Data in Python.” GI_Forum
2019, Volume 7, (June): 54–68. https://doi.org/10.1553/giscience2019_01_s54.
Graving, Jacob M, Daniel Chae, Hemal Naik, Liang Li, Benjamin Koger,
Blair R Costelloe, and Iain D Couzin. 2019.
“DeepPoseKit, a Software Toolkit for Fast and Robust
Animal Pose Estimation Using Deep Learning.” Edited by Ian T
Baldwin, Josh W Shaevitz, Josh W Shaevitz, and Greg Stephens.
eLife 8 (October): e47994. https://doi.org/10.7554/eLife.47994.
Günel, Semih, Helge Rhodin, Daniel Morales, João Campagnolo, Pavan
Ramdya, and Pascal Fua. 2019. “DeepFly3D, a Deep
Learning-Based Approach for 3D Limb and Appendage Tracking
in Tethered, Adult Drosophila.” Edited by Timothy
O’Leary, Ronald L Calabrese, and Josh W Shaevitz. eLife 8
(October): e48571. https://doi.org/10.7554/eLife.48571.
Ho, Hinze, Nejc Kejzar, Hiroki Sasaguri, Takashi Saito, Takaomi C.
Saido, Bart De Strooper, Marius Bauza, and Julija Krupic. 2023. “A
Fully Automated Home Cage for Long-Term Continuous Phenotyping of Mouse
Cognition and Behavior.” Cell Reports Methods 3 (7):
100532. https://doi.org/10.1016/j.crmeth.2023.100532.
Hsu, Alexander I., and Eric A. Yttri. 2021. “B-SOiD,
an Open-Source Unsupervised Algorithm for Identification and Fast
Prediction of Behaviors.” Nature Communications 12 (1):
5188. https://doi.org/10.1038/s41467-021-25420-x.
Hu, Yujia, Carrie R. Ferrario, Alexander D. Maitland, Rita B. Ionides,
Anjesh Ghimire, Brendon Watson, Kenichi Iwasaki, et al. 2023.
“LabGym: Quantification of User-Defined
Animal Behaviors Using Learning-Based Holistic Assessment.”
Cell Reports Methods 0 (0). https://doi.org/10.1016/j.crmeth.2023.100415.
Kabra, Mayank, Alice A. Robie, Marta Rivera-Alba, Steven Branson, and
Kristin Branson. 2013. “JAABA: Interactive Machine
Learning for Automatic Annotation of Animal Behavior.” Nature
Methods 10 (1): 64–67. https://doi.org/10.1038/nmeth.2281.
Karashchuk, Pierre, Katie L. Rupp, Evyn S. Dickinson, Sarah
Walling-Bell, Elischa Sanders, Eiman Azim, Bingni W. Brunton, and John
C. Tuthill. 2021. “Anipose: A Toolkit for Robust
Markerless 3D Pose Estimation.” Cell
Reports 36 (13): 109730. https://doi.org/10.1016/j.celrep.2021.109730.
Koolhaas Jaap M., de Boer Sietse F., Coppens Caroline M. 2013.
“The Resident-Intruder Paradigm: A Standardized Test for
Aggression, Violence and Social Stress.” JoVE, no. 77:
e4367. https://doi.org/doi:10.3791/4367.
Krakauer, John W., Asif A. Ghazanfar, Alex Gomez-Marin, Malcolm A.
MacIver, and David Poeppel. 2017. “Neuroscience Needs
Behavior: Correcting a
Reductionist Bias.” Neuron 93
(3): 480–90. https://doi.org/10.1016/j.neuron.2016.12.041.
Lauer, Jessy, Mu Zhou, Shaokai Ye, William Menegas, Steffen Schneider,
Tanmay Nath, Mohammed Mostafizur Rahman, et al. 2022.
“Multi-Animal Pose Estimation, Identification and Tracking with
DeepLabCut.” Nature Methods 19 (4):
496–504. https://doi.org/10.1038/s41592-022-01443-0.
Levitis, Daniel A., William Z. Lidicker, and Glenn Freund. 2009.
“Behavioural Biologists Don’t Agree on What Constitutes
Behaviour.” Animal Behaviour 78 (1): 103–10. https://doi.org/10.1016/j.anbehav.2009.03.018.
Lopes, Gonçalo, Niccolò Bonacchi, João Frazão, Joana P. Neto, Bassam V.
Atallah, Sofia Soares, Luís Moreira, et al. 2015. “Bonsai: An
Event-Based Framework for Processing and Controlling Data
Streams.” Frontiers in Neuroinformatics 9. https://www.frontiersin.org/articles/10.3389/fninf.2015.00007.
Luxem, Kevin, Petra Mocellin, Falko Fuhrmann, Johannes Kürsch, Stephanie
R. Miller, Jorge J. Palop, Stefan Remy, and Pavol Bauer. 2022.
“Identifying Behavioral Structure from Deep Variational Embeddings
of Animal Motion.” Communications Biology 5 (1): 1–15.
https://doi.org/10.1038/s42003-022-04080-7.
Luxem, Kevin, Jennifer J Sun, Sean P Bradley, Keerthi Krishnan, Eric
Yttri, Jan Zimmermann, Talmo D Pereira, and Mark Laubach. 2023.
“Open-Source Tools for Behavioral Video Analysis:
Setup, Methods, and Best Practices.” Edited by
Denise J Cai and Laura L Colgin. eLife 12 (March): e79305. https://doi.org/10.7554/eLife.79305.
Martinez, Romain, Benjamin Michaud, and Mickael Begon. 2020.
“‘Pyomeca‘: An Open-Source Framework for Biomechanical
Analysis.” Journal of Open Source Software 5 (53): 2431.
https://doi.org/10.21105/joss.02431.
Mathis, Alexander, Pranav Mamidanna, Kevin M. Cury, Taiga Abe, Venkatesh
N. Murthy, Mackenzie Weygandt Mathis, and Matthias Bethge. 2018.
“DeepLabCut: Markerless Pose Estimation of
User-Defined Body Parts with Deep Learning.” Nature
Neuroscience 21 (9): 1281–89. https://doi.org/10.1038/s41593-018-0209-y.
Mathis, Alexander, Steffen Schneider, Jessy Lauer, and Mackenzie
Weygandt Mathis. 2020. “A Primer on
Motion Capture with Deep
Learning: Principles, Pitfalls,
and Perspectives.” Neuron 108 (1): 44–65.
https://doi.org/10.1016/j.neuron.2020.09.017.
Miranda, Lucas, Joeri Bordes, Benno Pütz, Mathias V. Schmidt, and
Bertram Müller-Myhsok. 2023. “DeepOF: A Python Package for
Supervised and Unsupervised Pattern Recognition in Mice Motion Tracking
Data.” Journal of Open Source Software 8 (86): 5394. https://doi.org/10.21105/joss.05394.
Pappalardo, Luca, Filippo Simini, Gianni Barlacchi, and Roberto
Pellungrini. 2022. “Scikit-Mobility: A Python Library for the
Analysis, Generation, and Risk Assessment of Mobility Data.”
Journal of Statistical Software 103 (1): 1–38. https://doi.org/10.18637/jss.v103.i04.
Pereira, Talmo D., Joshua W. Shaevitz, and Mala Murthy. 2020.
“Quantifying Behavior to Understand the Brain.” Nature
Neuroscience 23 (12): 1537–49. https://doi.org/10.1038/s41593-020-00734-z.
Pereira, Talmo D., Nathaniel Tabris, Arie Matsliah, David M. Turner,
Junyu Li, Shruthi Ravindranath, Eleni S. Papadoyannis, et al. 2022.
“SLEAP: A Deep Learning System for
Multi-Animal Pose Tracking.” Nature Methods 19 (4):
486–95. https://doi.org/10.1038/s41592-022-01426-1.
Roald-Arbøl, Mikkel. 2024. “Animovement: An r Toolbox for
Analysing Animal Movement Across Space and Time.” http://www.roald-arboel.com/animovement/.
Romero-Ferrero, Francisco, Mattia G. Bergomi, Robert C. Hinz, Francisco
J. H. Heras, and Gonzalo G. de Polavieja. 2019. “Idtracker.ai:
Tracking All Individuals in Small or Large Collectives of Unmarked
Animals.” Nature Methods 16 (2): 179–82. https://doi.org/10.1038/s41592-018-0295-5.
Schweihoff, Jens F., Alexander I. Hsu, Martin K. Schwarz, and Eric A.
Yttri. 2022. “A-SOiD, an Active Learning Platform for
Expert-Guided, Data Efficient Discovery of Behavior.” bioRxiv. https://doi.org/10.1101/2022.11.04.515138.
Segalin, Cristina, Jalani Williams, Tomomi Karigo, May Hui, Moriel
Zelikowsky, Jennifer J Sun, Pietro Perona, David J Anderson, and Ann
Kennedy. 2021. “The Mouse Action Recognition System (MARS)
Software Pipeline for Automated Analysis of Social Behaviors in
Mice.” Edited by Gordon J Berman, Kate M Wassum, and Asaf Gal.
eLife 10 (November): e63720. https://doi.org/10.7554/eLife.63720.
Sirmpilatze, Niko, Sofía Miñano, Chang Huan Lo, Adam Tyson, Will Graham,
Stella Prins, Brandon Peri, et al. 2025.
“Neuroinformatics-Unit/Movement: V0.9.0.” Zenodo. https://doi.org/10.5281/zenodo.16754905.
Sun, Jennifer J., Tomomi Karigo, David J. Anderson, Pietro Perona,
Yisong Yue, and Ann Kennedy. 2021. “Caltech Mouse Social
Interactions (CalMS21) Dataset.” CaltechDATA. https://doi.org/10.22002/D1.1991.
Tinbergen, Niko. 1951. The Study of
Instinct. Clarendon Press.
Tomar, Suramya. 2006. “Converting Video Formats with
FFmpeg.” Linux Journal 2006 (146): 10.
Walter, Tristan, and Iain D Couzin. 2021. “TRex, a
Fast Multi-Animal Tracking System with Markerless Identification, and
2D Estimation of Posture and Visual Fields.” Edited
by David Lentink, Christian Rutz, and Sergi Pujades. eLife 10
(February): e64000. https://doi.org/10.7554/eLife.64000.
Weinreb, Caleb. 2024. “Keypoint-MoSeq: Parsing
Behavior by Linking Point Tracking to Pose Dynamics.” Nature
Methods 21.
Wiltschko, Alexander B., Matthew J. Johnson, Giuliano Iurilli, Ralph E.
Peterson, Jesse M. Katon, Stan L. Pashkovski, Victoria E. Abraira, Ryan
P. Adams, and Sandeep Robert Datta. 2015. “Mapping
Sub-Second Structure in
Mouse Behavior.” Neuron 88
(6): 1121–35. https://doi.org/10.1016/j.neuron.2015.11.031.